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Almxaet--A two-equation turbulence model for two-phase flows has recently been proposed by 
Elghobashi & Abou-Arab (1983). They derived the exact equations of the kinetic energy of 
turbulence and the rate of dissipation of that energy, and modeled the turbulent correlations, 
resulting from time-averaging, up to third order. In order to validate the proposed model, a 
turbulent axisymmetric gaseous jet laden with spherical uniform-size solid particles is studied here. 
The predictions of the mean flow properties of the two-phases and the turbulence kinetic energy 
and shear stress of the carrier phase show good agreement with the experimental data. 

1. I N T R O D U C T I O N  

Particle-laden turbulent jets occur in many engineering applications. Pulverised-coal 
combustors, diesel-engine sprays, aerosols and rocket plumes are some examples. In order 
to enhance the understanding of the interaction between the dispersed phase and the 
carrier fluid in these jets parallel experimental and theoretical studies are needed. The need 
for this coordinated effort stems from the fact that until very recently it was impossible 
to find in the literature a well-documented experimental study of a two-phase turbulent 
jet. In fact until a year ago the only two available experimental studies of two-phase 
turbulent jets (I-Ietsroni & Sokolov 1971; Popper et  al. 1974) did not report the radial 
profiles of the main dependent variables at the nozzle exit. This information is essential 
for accurately predicting such flow as it is known that the dependence of the downstream 
flow upon the nozzle conditions persists for at least 50 nozzle diameters (Barker 1973). The 
recent experiment of Modarress et  al. (1982, 1983), which was performed in parallel with 
the present work, provided a much needed data to help understand the behavior of 
two-phase turbulent jets and validate the theoretical models. Elghobashi & Abou-Arab 
(1983) reviewed existing turbulence models for two-phase flows and indicated that these 
models are based on ad hoc modifications of single-phase turbulence models. They 
developed a two-equation turbulence model for incompressible dilute two-phase flows 
which undergo no phase changes. The new model was based on rigorously derived 
transport equations for the two phases. The purpose of this paper is to apply this model 
to the flow of a turbulent axisymmetric gaseous jet laden with solid, uniform-size particles 
and compare the predictions with the data of Modarress et  al. (1982, 1983). 

2. THE FLOW CONSIDERED 

Figure 1 shows a sketch of the two-phase turbulent jet considered in this work. Air 
carrying uniform size glass beads issues vertically downwards from a cylindrical pipe of 
diameter D( = 0.02 m). The jet is enclosed in a cylindrical container of diameter equal to 
30 D to avoid ambient disturbances. Low velocity air stream surrounds the nozzle and 
extends to the container wall to provide well-defined boundary conditions. Table 1 lists 
the experimental conditions at 0.1D downstream of the pipe exit. 

3. M A T H E M A T I C A L  MODEL 

The governing equations for incompressible turbulent two-phase flows have been 
derived by Elghobashi & Abou-Arab (1983) by Reynolds decomposition and time 
averaging the instantaneous equations. Closure of the time-mean equations was achieved 
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Figure 1. Flow schematic. 

by modeling the turbulent correlations up to third order, in the equations of the mean 
motion, kinetic energy of turbulence and the rate of dissipation of  that energy. Assuming 
the dh'~usional fluxes in the radial ~ direction to be much greater than those in the axial 
direction for the flow considered, the governing equations are listed below in the modeled 
form in cylindrical coordinates. 

3.1 Equations of the mean motion 
The mean motion of each phase is governed by its momentum equations in the axial 

and radial directions and the conservation of its mass. 
The momentum equation of the carrier fluid in the axial (x) direction is: 

V t 

[ ] ]  

The momentum equation of the solid phase in the axial (x) direction is 

P202V~Vx~+P202V'V~"=-02P~+FO2(Ux-Vx)+I( p202rvpV~')r ,, + C"p2V~" 

k v,, 

where cml - - -  0.4~ and c,5 - - -  0.1. 
The mean continuity equation of the solid phase is: 

• ,x 

[2] 

[3] 
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Table 1. Experimental flow conditions at 0.1D downstream of pipe exit 

G u - P h a s e  (Ai r ) :  Case 1 Case 2 Case 3 

Cen te r l lne  v e l o c i t y ,  Uz, c (m/s)  

Exponent,  n,  of  power law v e l o c l t y  

Profile Ux/Ux. c = (l-(2rlV))I/n 

Turbulenoe I n t e n s i t y  

(ux/Ux,c) 

Dens i ty ,  Pl (t('glm3) 

Mass f low r a t e  i I (gg/s) 

Reynolds number R e - (411/amID) 

U n i f o m  m a n  v e l o c i t y  of su r round ing  

strata,  ux, . (m/s) 

I n t e n s i t y  of t u r b u l e n c e  in  

sur roundlng  ( u x , s / U x , s )  

P a r t i c l e  d iameter  (microns)  

P a r t i c l e  d e ~ i t y ,  02 (Kg/m 3) 

Cen te r l i ne  v e l o c i t y .  Vx, c (m/s) 

Exponent.  n,  of  power law v e l o c i t y '  

p r o f i l e  

Mass glow r a t e  6 2 ( l ~ / s )  

Rat io  of mass flow r a t e s  

0 o= -'2111 

Ratio  of vo lumet r i c  f r a c t i o u s  - 

@2/@1 - ( 1 2 1 1 1 ) ( P l U x , a v . l P 2 v x , a v . )  

12.6 12.6 13.4 

< 6.6 ....... > 

< ...... (0.04 + 0.I r/D)~> 

< 1.178 ~ > 

3.76x10 "3 3.76x10 -3 4x10 -3  

13300 13300 14100 

<' O.O'i== - = > 

< ' - -  0 . 1  - > 

50 50 200 

<" 2990 - -  .> 

12.t~ 12.4 10.2 

< ' - -  27,6 . . . . . .  > 

1,2xlO -3 3,2x10 -3 3,2x10 -3  

0.32 0,8.5 0,8 

1 • 1][10 -4  2,9x10 -4 3,.52x10 -4  
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The mean global continuity equation is: 

0 1 + ~  2 = 1. [4] 

In the above equations the comma-suffix notation indicates differentiation with respect to 
the spatial coordinates x and r. U and V are respectively the mean velocities of the carrier 
fluid and dispersed phase. The subscripts 1 and 2 denote respectively the carrier fluid and 
the dispersed phase, p is the material density, • the mean volume fraction, p the mean 
pressure, #, the eddy viscosity of the fluid, vp the kinematic eddy viscosity of the dispersed 
phase, vt the kinematic eddy viscosity of the fluid, o~ the turbulent Schmidt number of the 
volume fraction (its numerical value is given in Table 2) and g is the acceleration due to 
gravity. 

The two terms on the l.h.s, of [1] represent the inertia force per unit volume due to fluid 
acceleration in the x and r directions. The first term on the r.h.s, is the force duo to pressure 
gradient and the second is the drag force due to the slip between the two phases. The third 
term represents the turbulent diffusion of the fluid's momentum. The fourth term models 
the correlations p~b~,~ and p~ U ~ u  1, i.e. the interaction between pressure fluctuation and 
the gradient of the fluctuating fluid volume fraction (Elghobashi & Abou-Arab 1983), and 
the transport of momentum due to the interaction between the mean flow and fluctuations 
of the volume fraction and velocity. The fifth and sixth terms represent the correlation 
O~u~uj, i.e. the transport of momentum due to the interaction between the fluid turbulent 
stresses and its volume fraction fluctuations. 

The momentum equations of both phases in the radial direction can be written in a 
similar manner and will not be presented here. 

The kinematic eddy viscosity of the carrier fluid is related to fluid turbulent kinetic 
energy (k) and the rate of dissipation (e) of  k by: 

k 2 
v, = T '  [51 

where 

= 0.o9 - o.o4f; [61 

f---  0.5R dx . [7] 
v x . c -  vx.® 

U~.c and Ux,® are the axial velocities of the fluid at the jet centerline and the ambient stream 
respectively,. R is the local jet width (Launder et al. 1972). 

The quantities F and vp are evaluated in the following section. 

3.2 The momentum exchange coe.Oicient F 
The momentum exchange coefficient F is given by 

F = 18Z ,/a , [8] 

where d is the particle diameter, #~ is the dynamic viscosity of the fluid, and Z is a 
correction factor of the Stokes' drag law which depends on the particle Reynolds number 
and can be obtained from the standard drag curve of steady flow around a sphere (Clift 
et al. 1978) as follows 

Z -- 1 + 0.1315Re c°'s2-°'°Sl°s*°ne), 0.01 < Re ~< 20; and 

Z -- 1 + 0.1935P~ °'~3°5, 20 < Re ~< 260. [9] 
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The particle Reynolds number/~ is calculated from 

-- dlU - vi/v,, [I01 

where [U - Vl is the magnitude of the total relative mean velocity vector between the two 
phases, and vj is the kinematic viscosity of the fluid. 

3.3 Turbulent diffusivity of solid particles 
The turbulent diffusivity of solid particles is evaluated by introducing the particle 

Schmidt number % defined as: 

v, [11l 
vp 

Since solid particles do not in general follow the motion of the surrounding fluid from one 
point to another it is expected that % will be different from unity and vary with the particle 
relaxation time and local turbulence quantities. Alonso (1981) reviewed the recent 
developments in evaluating % and recommended the use of Peskin's (1971) formula 

= (1/%) = 1 - (3/2)(LL/A)2[Q2/(Q + 2)] [12] 

where 

Q - (2p2/FTL), [131 

and T L and LL are the local Lagrangian integral time and length scales respectively and 
is the Euierian microscale. 

When (LL/~) is much less than unity the fluid elements in the neighborhood of the solid 
particle will have similar velocities (i.e. homogeneous flow). Consequently, the correlation 
of fluid velocities encountered by the particle will be similar to the Lagrangian fluid 
correlation and %, from [12], will approach unity. On the other hand as LL becomes larger 
than R the particle will be surrounded by random fluid velocities and its diffusivity will 
decrease relative to that of the fluid. 

The local Lagrangian integral time scale, T,, is evaluated assuming isotropic turbulence 
(Calabrese & Middleman 1979); thus 

---- ISvlu2/A 2 and ~.2 = 24VITL which give 

TL ffi (5112)k [14] 

The local Lagrangian length scale, LL, appearing in [12], and the Euierian microscale A are 
calculated from 

LL ~- ~3  kTL, [15] 

= lO,/i6V ,k/ . [16] 

Equation [12] with the aid of [13H16] produces unrealistic (negative) values for the ratio 
of the particle diffusivity to that of the fluid. This may be attributed to the large slip 



702 s. ~ G H O ~  et al. 

velocity between the two phases that has been neglected in Peskin's work. Soo (1967) 
reported the same inconsistency between the measurements and the numerical results 
produced by Peskin's formula for a turbulent pipe flow seeded with glass particles. He 
found that the half duct diameter should replace ~., in [12], to obtain good agreement with 
his experimental data. In the present work a parametric study optimized the length scale 
ratio that produces agreement with the experimental data. It was found that the ratio LL/A 
should be replaced by LdR where R is the local width of the jet. The dissipation length 
scale, L~, is calculated from 

L, = c~/4k3/21~. [17] 

3.4 The turbulence model 
The turbulence kinetic equation (k) of the carrier fluid is 

' 4 L, ( '_ ,  p~¢~U/c.~+p~O~U~k,=o~O,v,U~U~-go~C,s c , \o * .u,., 
Convection Production Extra Production 

Extra Production 

-FOzk[1-f~(gg'~'~f(co)dco]-F(U.-V.)(~O,.) 
Extra Dissipation 

Extra Dissipation 

r\ok /~ 
Turbulent Diffusion Dissipation [18] 

The turbulence energy dissipation rate equation (~) is 

6 [" 4 /'v,\/' v, 

Convection Total Production 

Extra Dissipation 

Turbulent Diffusion Dissipation 

[19] 
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The terms, in [18] and [19], involving integration in the frequency domain (co) represent 
additional dissipation of k or c due to the slip between the particles and the fluid and 
depend on the magnitude of correlation between their respective instantaneous velocities. 
Details of the derivation of these terms are given in (Elghobashi & Abou-Arab 1983). 

The Lagrangian frequency function, f(o~) is in general affected by the presence of the 
dispersed phase. In the low frequency range (inertial subrange), the modulation of the 
Lagrangian frequency function of the carrier fluid by the dispersed phase can be neglected 
(AI Taweel & Landau 1977). Thus in the present work the Lagrangian frequency function 
is given by (I-Iinze 1975), 

[201 

where co ranges from 1 to 104 (sec-') and TL is calculated from [14]. It should be mentioned 
that the above expression[20] forf(oJ) is different from the one employed by Elghobashi 
& Abou-Arab (1983). The former is simpler to use than the latter which contained an 
exponential. However, in order to produce identical results by both forms, the coefficient 
co appearing in [19] must be lowered from 1.2 to 1.0 (see table 2). The functions 1~,, ~2, 
t2 R, a and/] are evaluated according to (Elghobashi & Abou-Arab 1983) from 

•, ( ) ( ) + 3 ( ~ ) +  "x/(6)t~ )/¢''/2; 

DR = [(1 - -  

ffi 12vl/d 2, 

[$ = 3Pn/(2P2 + Pn). [ 2 1 ]  

The values of the coefficients appearing in [18] and [19] are listed in table 2 below. 

Table 2. Coefficients of the turbulence model 

~, at c~ ¢, cts c,, Ca co 

l 1 [ 6 ] 1.3 O.l 1.44 [22] l.O 

The constant ca in table (2) is given by 

ca = 1.92 - 0.0667f [22] 

where f is given by [7]. 
It is seen that three new coefficients (a~, c,s, c,3) are now added to the well-established 

k - ~ coefficients for single-phase flows, namely at, ¢~, c~, c,, and ca. The values of the new 
coefficients have been o p t i m i 7 ~ l  to produce good agreement with the data of (Moderress 
et al. 1982, 1983) for one particle size (200/~m) and then used to predict the data of the 
other size (50/~m). It should be emphasized that more validation testing is required to 
establish the universality of these coefficients. 
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3.5 Boundary conditions 
The parabolic flow considered here requires the prescription of three boundary 

conditions for each dependent variable. Table 1 provides these conditions at the pipe exit 
plane and at the jet boundary. At the axis of symmetry (r = 0) all the radial gradients are 
set to zero, in addition to the vanishing radial velocity of each phase. 

4. N U M E R I C A L  S O L U T I O N  P R O C E D U R E  

The marching finite-difference procedure employed in this work is a modified version 
of that developed and described by Spalding (1979) for laminar two-phase flows. The 
modifications included the treatment of the turbulent correlations existing in the continuity 
and momentum equations of the two-phases. Only a brief outline is given here. 

The coordinates of the expanding finite-difference grid are x and ~, the stream function 
based on the mean gas-phase properties, i.e. 

¢ -- f~ P10! U / d r .  [23] 

The steps followed to obtain the solution at a given axial location are: 
(1) Guess the downstream O~* distribution. 
(2) Solve for Ux downstream. 
(3) Solve for k and e; obtain r's and solve for U,. 
(4) Obtain p(r) from U, equation. 
(5) Solve for downstream V, V,, O2 and get Oi. 
(6) Compare the new Ot with the guessed O~* and repeat steps 1-5 until the solution 

converges before marching to the next station. 
It was found that 3 iterations are needed at each station to achieve convergence. 

5. R E S U L T S  A N D  D I S C U S S I O N S  

The results presented here were obtained using 40 lateral nodes to span the flow domain 
between the centerline of the jet and its outer edge. Grid-dependence tests were conducted 
with 30, 40 and 50 lateral nodes and different axial step sizes and concluded that the 40 
node grid results are virtually grid-independent. 

In what follows we compare the predicted with the measured distributions of the mean 
velocities, volume fractions of the two phases, turbulence intensity and shear stress of the 
gaseous phase and the jet spreading rate. 

Figure 2 shows the radial profiles of the mean axial velocities of the two phases at 
x/D = 20, normalized by the centerline velocity of the single-phase jet, U c ~ .  The flow 
conditions are those of case 3 in table 1. Also shown is the mean velocity profile of  the 
turbulent single-phase jet having the same Reynolds number (14100) at the pipe exit. 

It is seen that the centerline velocity of the dispersed phase is about 1.8 times that of 
the carrier fluid although the latter is 1.3 times the former at the pipe exit. This can be 
explained by the fact that large-diameter ( > 10/0 particles do not respond well to the fluid 
turbulent fluctuations ([7] and [8] indicate that for a fixed/7 2 and TL we get vp ~ vt for small 
F, i.e. large d) thus the main force that accelerates a particle in the radial direction is the 
viscous drag exerted on the particle by the fluid radial velocity, U,. Now this drag force 
is proportional to (U,-  V,) and since U, is negative in the outer region of the jet (and 
V, < U,) the resulting force will be directed inwards thus limiting the radial spread of the 
particles. This is evident in figure 3 where the concentration of the sofid particles vanish 
at a radial distance of r/x --- 0.12 while the fluid spreads to at least three times this distance. 
Conservation of momentum of each phase then results in the solid-phase axial velocity 
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being much higher than that of  the fluid, and in turn the particles continue to be a source 
of momentum for the fluid. It is also clear from figure 3 that the single-phase jet is wider 
than the particle-laden jet; this will be discussed later in this section. Both figures 2 and 
3 display in general good agreement between the measured and predicted velocity and 
concentration profiles. 

The measured and predicted mean velocity profiles for case 2 (d = 50p, O0 = 0.85, 
Re = 13300) are shown in figure 4. Similar qualitative behavior to that of  case 3 is exhibited 
here except that now the ratio between the experimental velocities of the solid and the fluid 
is only about 1.15 instead of 1.8 in case 3 (d = 200p, O0 = 0.8, Reffi 14100). The main 
difference between the two cases is the particle diameter, and thus any quantitative change 
in the mean velocity profiles is attributed to the interphase surface area acted on by the 
viscous drag. This surface area in case 2 is four times that in case 3, since, for nearly the 
same loading ratio, the number of the 50 p particles is 64 times that of the 200/~ particles. 
This increase in the number of particles and interphase area results in augmenting the 
momentum sources of the carrier fluid thus reducing the rate of decay of its centerline 
velocity. 

The agreement is very good between the measured and predicted fluid velocity while 
the solid-phase velocity is underestimated by 8% in the inner region, a discrepancy well 
within the bounds of experimental error. Figure 5 shows the mean velocity profiles at 
x/D = 20 for case 1 (50 p, Re = 13300, ~0 = 0.32) which has a lower loading ratio, ~0, than 
case 2, otherwise the two cases are identical. Again the behavior of the two phases is similar 
to that observed in the other two cases except that now the experimental ratio between 
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Figure 4. Mean velocity profiles at  x/D = 20 for case 2. 
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Figure 5. Mean velo(fity profiles at xlD = 20 for case 1. 

the centerline velocities of  the solid and the fluid is 1.2 instead of  1.15 in the higher-loading 
case (case 2). This indicates that, other conditions being the same, higher loading reduces 
the rate of  decay of  the fluid centerline velocity. This is a result of  the increase in the 
number of  particles and hence their contribution to the fluid momentum as discussed 
earlier. 

In order to distinguish between the dispersed phase effects on the mean motion (inertia 
and drag) a n d  on turbulence (diffusion) we show (figure 5) the mean velocity profiles 
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Figure 6. Turbulence intensity profile at x/l) = 20 for case 3. 
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obtained by solving the complete two-phase momentum equations [l], [2] together with 
the single-phase k and E equations (i.e. [3], [4] without the additional production and 
dissipation terms due to the dispersed phase). We see that the resulting increase in the fluid 
centerline velocity, as compared to that of  the single-phase jet, is only ha/./'that measured 
and predicted by the new k - ~ model. Stated differently, the modulation of the fluid 
mean-velocity profile by the dispersed phase is not only due to the particles inertia and drag 
but equally important due to the additional turbulence dissipation. This in turn reduces the 
fluid momentum diffusivity with the result of a peaked velocity profile near the jet centerline. 
The additional turbulence dissipation is caused mainly by the fluctuating particle relative 
velocity and its correlation with the fluid velocity fluctuation[6]. The consequent reduction 
in the fluid turbulence intensity and shear stress is displayed in figures 6 and 7 where the 
agreement between the measurement and prediction is good. 

Figure 8 shows the effect of the dispersed phase on the spreading rate of the jet by 
comparing the different YI/2 " x distributions of the three cases, where Y~/2 is the radius 
at which the fluid mean axial velocity is half that at the centerline. While for a turbulent 
single-phase jet the value of the slope (d Yt/2/dx) is constant ( _~ 0.08), that for a two-phase 
jet is a function of the dispersed phase properties such as particle diameter and density 
and loading ratio. This dependence is displayed in the figure. For case 3 (d = 200/~, 
¢0 = 0.8) the predicted slope value is 0.053, for case 2 (d = 50/~, ¢0 = 0.85) it is 0.046, and 
for case I (d = 50/~, ¢0 = 0.32) it is 0.064. Cases 3 and 2 have nearly the same loading ratio 
but the particle diameter in the latter is one quarter that of  the former; the result being 
a reduction of the spreading rate by more than 13%. 

Cases 1 and 2 are identical except that the loading ratio in the latter is 2.66 times that 
of the former; the result being a reduction of the spreading rate by 28%. 

The figure also shows the discrepancy that results in predicting the spreading rate if 
the single-phase k - E model is used instead of the proposed model. The former predicts 
for case 1 a slope of 0.072 while the latter agrees with the experimental value of 0.064. 
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Figure 8. Jet spread rates for the three cases. 

As explained earlier this is due to the fact that the additional dissipation of turbulence 
energy due to the dispersed phase is accounted for in the proposed model. 

6. C O N C L U D I N G  R E M A R K S  

It has been shown that the turbulence model, introduced by (Elghobashi & Abou-Arab 
1983), allows the correct simulation of the two-phase turbulent jet. 

The additional dissipation produced by the relative velocity fluctuations has a 
significant effect on the jet development. Further testing is needed to check the universality 
of the coefficients in the model. 
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